a) \(P+\frac{1}{x+2}=\frac{x}{x^2-2 x+4}\)
Suy ra \(P=\frac{x}{x^2-2 x+4}-\frac{1}{x+2}\)
\(\begin{aligned}& =\frac{x(x+2)-x^2+2 x-4}{\left(x^2-2 x+4\right)(x+2)} \\& =\frac{x^2+2 x-x^2+2 x-4}{x^3+8} \\& =\frac{4 x-4}{x^3+8} .\end{aligned}\)
b) \(P-\frac{4(x-2)}{x+2}=\frac{16}{x-2}\)
Suy ra \(P=\frac{16}{x-2}+\frac{4 x-8}{x+2}\)
\(\begin{aligned}& =\frac{16(x+2)+(4 x-8)(x-2)}{(x-2)(x+2)} \\& =\frac{16 x+32+4 x^2-8 x-8 x+16}{(x-2)(x+2)} \\& =\frac{4 x^2+48}{x^2-4}\end{aligned}\)
c) P. \(\frac{x-2}{x+3}=\frac{x^2-4 x+4}{x^2-9}\)
Suy ra \(P=\frac{x^2-4 x+4}{x^2-9}: \frac{x-2}{x+3}\)
\(\begin{aligned}& =\frac{x^2-4 x+4}{x^2-9} \cdot \frac{x+3}{x-2} \\& =\frac{(x-2)^2(x+3)}{(x+3)(x-3)(x-2)} \\& =\frac{x-2}{x-3} .\end{aligned}\)
d) \(P: \frac{x^2-9}{2 x+4}=\frac{x^2-4}{x^2+3 x}\)
Suy ra \(P=\frac{x^2-4}{x^2+3 x} \cdot \frac{x^2-9}{2 x+4}\)
\(\begin{aligned}& =\frac{(x-2)(x+2)(x+3)(x-3)}{x(x+3) \cdot 2(x+2)} \\& =\frac{(x-2)(x-3)}{2 x} .\end{aligned}\)