Bài 35: Định lí Pythagore và ứng dụng

Trang 93

Mở đầu

93

Bạn Lan vẽ một hình chữ nhật với chiều rộng và chiều dài lần lượt là 1; 3 (đơn vị độ dài). Sau đó Lan đặt lên trục số đoạn OM có độ dài bằng độ dài của đường chéo hình chữ nhật vừa vẽ (trục số nằm ngang và M nằm bên phải gốc O). Hỏi điểm M biểu diễn số thực nào? Biết rằng đơn vị độ dài trên trục số và đơn vị độ dài đo kích thước hình chữ nhật là như nhau.

Đáp ánarrow-down-icon

Mở đầu trang 93 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Để biết được điểm M biểu diễn số thực nào, ta cần tính độ dài đoạn thẳng OM, hay chính là tính độ dài đường chéo OB của hình chữ nhật OABC khi biết chiều dài và chiều rộng của hình chữ nhật đó, điều này dẫn đến việc cần tính độ dài cạnh huyền của tam giác vuông khi biết độ dài hai cạnh góc vuông. Để làm được điều này, ta sẽ sử dụng kiến thức của bài học hôm nay.

Hoạt động 1

93

Cho tam giác vuông ABC có hai cạnh góc vuông AB = 3 cm, AC = 4 cm (H.9.31). Hãy đo độ dài cạnh BC và so sánh hai đại lượng \(AB^2 + AC^2\) với \(BC^2\).

HĐ1 trang 93 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

+ Đo độ dài \(\mathrm{BC}\) ta được \(\mathrm{BC}=5 \mathrm{~cm}\), vậy \(\mathrm{BC}^2=25\).
+ Ta có \(A B^2=3^2=9 ; A C^2=4^2=16\). Vậy \(A B^2+A C^2=25\).
Vậy \(A B^2+A C^2=B C^2\).

Hoạt động 2

93

Lấy giấy trắng cắt bốn tam giác vuông bằng nhau. Gọi a, b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền của các tam giác vuông này. Cắt một hình vuông bằng tấm bìa có cạnh dài a + b. Dán bốn tam giác vuông lên tấm bìa như Hình 9.32.

- Dùng ê ke kiểm tra phần bìa không bị che lấp có phải là hình vuông cạnh bằng c không. Từ đó tính diện tích phần bìa này theo c.

- Tổng diện tích bốn tam giác vuông có độ dài hai cạnh góc vuông a, b là bao nhiêu?

- Diện tích cả tấm bìa hình vuông cạnh a + b bằng bao nhiêu?

- So sánh \(c^2+2 a b\) với \((a+b)^2\) để rút ra nhận xét về mối quan hệ giữa hai đại lượng \(c^2\) và \(a^2+b^2\).

HĐ2 trang 93 Toán 8 Tập 2 | Kết nối tri thức Giải Toán
Đáp ánarrow-down-icon

+ Phần bia bị che lấp là hình vuông cạnh c. Diện tích của hình vuông là c².
+ Tổng diện tích bốn tam giác vuông: 4. \(\frac{1}{2} \cdot a \cdot b=2 a b\).
+ Diện tích tấm bia hình vuông có cạnh bằng \(\mathrm{a}+\mathrm{b}\) là: \((\mathrm{a}+\mathrm{b})^2\).
+ Khi đó \((a+b)^2=c^2+2 a b\), tức là \(a^2+2 a b+b^2=c^2+2 a b\). Suy ra \(c^2=a^2+b^2\).

Câu hỏi

94

Tìm độ dài x và y trong Hình 9.34.

Câu hỏi trang 94 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

+ Theo định lí Pythagore ta có: \(x^2=1^2+1^2=2\). Suy ra \(x=\sqrt{2}\).
+ Theo định lí Pythagore ta có: \(5=1^2+y^2\). Suy ra \(y^2=5-1=4\). Suy ra \(y=2\).

Luyện tập 1

95

Trên giấy kẻ ô vuông (cạnh ô vuông bằng 1 cm), cho các điểm A, B, C như Hình 9.35. Tính độ dài các cạnh của tam giác ABC.

Luyện tập 1 trang 95 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Luyện tập 1 trang 95 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Từ A kẻ AM sao cho AM ⊥ MB như hình vẽ trên.

Từ C kẻ CN sao cho CN ⊥ NB như hình vẽ trên.

Từ C kẻ EC sao cho EC ⊥ EA như hình vẽ trên.

- Xét ΔAMB có AM ⊥ MB 

Suy ra ΔAMB là tam giác vuông tại M.

Ta có: AB2 = AM2 + MB2 (định lí Pythagore).

Khi đó \(A B^2=2^2+3^2=13\). Suy ra \(A B=\sqrt{13} \mathrm{~cm}\).
- Xét \(\triangle B N C\) có \(C N \perp N B\)

Suy ra \(\triangle B N C\) là tam giác vuông tại \(N\).
Ta có: \(\mathrm{BC}^2=N B^2+N C^2\) (định lí Pythagore).
Khi đó \(B C^2=3^2+1^2=10\). Suy ra \(B C=\sqrt{\mathbf{1 0}} \mathrm{cm}\).
- Xét \(\triangle \mathrm{AEC}\) có \(\mathrm{EC} \perp \mathrm{EA}\).

Suy ra \(\triangle \mathrm{AEC}\) là tam giác vuông tại \(\mathrm{E}\)
Ta có: \(A C^2=A E^2+E C^2\) (định lí Pythagore).
Khi đó \(\mathrm{AC}^2=1^2+2^2=5\). Suy ra \(\mathrm{AC}=\sqrt{5} \mathrm{~cm}\).

Vận dụng 1

95

Em hãy giải bài toán mở đầu.

Bạn Lan vẽ một hình chữ nhật với chiều rộng và chiều dài lần lượt là 1; 3 (đơn vị đo độ dài). Sau đó Lan đặt lên trục số đoạn OM có độ dài bằng độ dài đường chéo hình chữ nhật vừa vẽ (trục số nằm ngang và M nằm bên phải gốc O). Hỏi điểm M biểu diễn số thực nào? Biết rằng đơn vị độ dài đo kích thước hình chữ nhật là như nhau.

Đáp ánarrow-down-icon

Nếu điểm M biểu diễn cho số thực x thì đoạn thẳng \(\mathrm{OM}\) có độ dài x (đơn vị độ dài).
Đoạn thẳng OM là cạnh huyền của một tam giác vuông với hai cạnh góc vuông là hai cạnh của hình chữ nhật.Theo định lí Pythagore ta có \(x^2=1^2+3^2=10\). Suy ra \(x=\sqrt{10}\)

Vậy điểm M biểu diễn số thực \(\sqrt{10}\).

Luyện tập 2

95

Cho tam giác vuông với kích thước như Hình 9.37. Hãy tính độ dài x và cho biết những tam giác nào đồng dạng, viết đúng kí hiệu đồng dạng.

Luyện tập 2 trang 95 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Tam giác \(A B C\) vuông tại \(A\) nên theo định lí Pythagore ta có: \(A B^2+A C^2=B C^2\).
Hay \(x^2+12^2=13^2\). Suy \(r a x^2=13^2-12^2=25\). Suy \(r a x=5\).
Vậy \(\triangle \mathrm{ABC}=\Delta \mathrm{EDF}\) (cạnh huyền - cạnh góc vuông).
Khi đó \(\triangle \mathrm{ABC} \backsim \triangle \mathrm{EDF}\). (1)
Lại có \(\frac{A B}{M P}=\frac{A C}{M N}=2 ; \widehat{B A C}=\widehat{N M P}=90^{\circ}\).
Do đó: \(\triangle A B C \sim \triangle M P N\) (c.g.c). (2)
Từ (1) và (2) suy ra \(\triangle M P N \sim \triangle E D F\).

Vận dụng 2

96

Để đón được một người khách, một xe taxi xuất phát từ vị trí điểm A, chạy dọc một con phố dài 3 km đến điểm B thì rẽ vuông góc sang trái, chạy được 3 km đến điểm C thì tài xế cho xe rẽ vuông góc sang phải, chạy 1 km nữa thì gặp người khách tại điểm D (H.9.38). Hỏi lúc đầu, khoảng cách từ chỗ người lái xe đến người khách là bao nhiêu kilômét?

Vận dụng 2 trang 96 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Có \(B C=A M=A B=C M=3 \mathrm{~km}\) (do \(A M C B\) là hình vuông).
Suy ra \(M D=C M+C D=3+1=4(\mathrm{~km})\).
Xét tam giác AMD vuông tại M, theo định lí Pythagore, ta có:
\(A D^2=A M^2+M D^2=3^2+4^2=25\). Suy ra \(A D=5 \mathrm{~km}\).
Vậy lúc đầu, khoảng cách từ chỗ người lái xe đến người khách là 5 km.

Câu hỏi

96

Cho Hình 9.40, trong các đoạn thẳng AC, AD, AE đoạn nào có độ dài lớn nhất, đoạn nào có độ dài nhỏ nhất?

Câu hỏi trang 96 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Áp dụng định lí Pythagore trong tam giác AHD vuông tại \(\mathrm{H}\) có:
\(A D^2=A H^2+H D^2(1)\)

Áp dụng định lí Pythagore trong tam giác AHC vuông tại \(\mathrm{H}\) có:
\(\mathrm{AC}^2=\mathrm{AH}^2+\mathrm{HC}^2(2)\)

Áp dụng định lí Pythagore trong tam giác AHE vuông tại \(\mathrm{H}\) có:
\(A E^2=A H^2+H E^2(3)\)

Vi \(\mathrm{HE}>\mathrm{HC}>\mathrm{HD}\) suy \(\mathrm{ra} \mathrm{HE}^2>\mathrm{HC}^2>\mathrm{HD}^2\). (4)
Từ (1), (2), (3), (4) suy ra: \(A E^2>A C^2>A D^2 \Rightarrow A E>A C>A D\).
Vậy đoạn AE là lớn nhất, đoạn AD là nhỏ nhất.

Luyện tập 3

96

Trước đây chúng ta thừa nhận định lí về trường hợp bằng nhau đặc biệt của hai tam giác vuông: “Nếu một cạnh góc vuông và cạnh huyền của tam giác vuông này bằng một cạnh góc vuông và cạnh huyền của tam giác vuông kia thì hai tam giác vuông đó bằng nhau”. Áp dụng định lí Pythagore, em hãy chứng minh định lí trên.

Luyện tập 3 trang 96 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

- Xét tam giác ABC vuông tại A, có
\(\mathrm{BC}^2=\mathrm{AB}^2+\mathrm{AC}^2\) (định lí Pythagore) (1)
- Xét tam giác A'B'C' vuông tại A' có:
\(B^{\prime} C^{\prime 2}=A^{\prime} B^{\prime 2}+A^{\prime} C^{\prime 2}\) (định lí Pythagore) (2)
Mà \(A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}(3)\)
Từ (1), (2), (3) suy ra \(A C=A^{\prime} C^{\prime}\).
Suy ra hai tam giác đã cho bằng nhau theo trường hợp cạnh - cạnh - cạnh.

Thử thách nhỏ

97

Tính chiều cao theo đơn vị centimét của một tam giác đều cạnh 2 cm (H.9.42) (làm tròn kết quả đến chữ số thập phân thứ hai).

Thử thách nhỏ trang 97 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Vì tam giác \(A B C\) là tam giác đều, \(A H \perp B C\) nên \(\mathrm{H}\) là trung điểm của \(B C\), suy ra \(\mathrm{HB}=\mathrm{HC}=\frac{B C}{2}=\frac{2}{2}=1(\mathrm{~cm})\).
Áp đụng định lí Pythagore trong tam giác vuông AHC ta có:
\(A C^2=A H^2+H C^2 \Rightarrow A H^2=A C^2-H C^2=2^2-1^2=3 \Rightarrow A H=\sqrt{3} \approx 1,73(\mathrm{~cm}) .\)

Vậy chiều cao của tam giác đều khoảng \(1,73 \mathrm{~cm}\).

Câu hỏi 9.17

97

Cho tam giác ABC vuông tại A. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai ?

a) \(A B^2+B C^2=A C^2\).
b) \(B C^2-A C^2=A B^2\).
c) \(A C^2+B C^2=A B^2\).
d) \(\mathrm{BC}^2-\mathrm{AB}^2=\mathrm{AC}^2\).

Đáp ánarrow-down-icon

Tam giác \(A B C\) vuông tại \(A\) thì \(B C\) là cạnh huyền.
Khi đó, theo định lí Pythagore, ta có \(\mathrm{BC}^2=\mathrm{AB}^2+\mathrm{AC}\), suy ra \(\mathrm{BC}^2-\mathrm{AC}^2=\mathrm{AB}^2\) hay \(\mathrm{BC}^2\) \(-A B^2=A C^2\).

Do đó b) và d) là khẳng định đúng; a) và c) là khẳng định sai.

Câu hỏi 9.18

97

Những bộ ba số đo nào dưới đây là độ dài ba cạnh của một tam giác vuông?

a) 1 cm,1 cm, 2 cm.

b) 2 cm, 4 cm, 20 cm.

c) 5 cm, 4 cm, 3 cm.

d) 2 cm, 2 cm, 2√2 cm.

Đáp ánarrow-down-icon

Do \(1+1=2\) và \(2+4=6<20\) nên các bộ ba trong a) , b) đều không thỏa mãn bất đẳng thức tam giác nên không thể là độ dài ba cạnh của một tam giác.

Vì \(5^2=3^2+4^2\) và \((2 \sqrt{2})^2=2^2+2^2\) nên các bộ ba trong c), d) là độ dài ba cạnh của tam giác vuông (theo định lí Pythagore đảo).

Câu hỏi 9.19

97

Tính độ dài x, y, z, t trong Hình 9.43.

Bài 9.19 trang 97 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Các tam giác trong Hình 9.43 đều là các tam giác vuông nên ta áp dụng định lí Pythagore.
+) \(x^2=4^2+2^2=20\). Suy ra \(x=2 \sqrt{5}\).
+) \(5^2=4^2+y^2\) nên \(y^2=5^2-4^2=9\). Suy ra \(y=3\).
+) \(z^2=(\sqrt{5})^2+(2 \sqrt{5})^2=25\). Suy ra \(z=5\).
+) \(t^2=1^2+2^2=5\). Suy ra \(t=\sqrt{5}\).

Câu hỏi 9.20

97

Cho tam giác ABC cân tại đỉnh A, chiều cao AH = 3 cm và cạnh đáy BC = 10 cm. Hãy tính độ dài các cạnh bên AB, AC.

Bài 9.20 trang 97 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Vì tam giác ABC cân tại A có đường cao AH nên AH cũng là đường trung tuyến hay H là trung điểm BC. Suy ra HB = HC = BC : 2 = 10 : 2 = 5 cm.

Xét tam giác AHB vuông tại H, theo định lí Pythagore ta có

AB2 = AH2 + HB2 = 32 + 52 = 34.

Suy ra AB = √34  cm.

Do tam giác ABC cân tại A nên AC = AB = √34  cm.

Câu hỏi 9.21

97

Hãy tính diện tích của một hình chữ nhật có chiều rộng 8 cm và đường chéo dài 17 cm.

Bài 9.21 trang 97 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

Áp dụng định lí Pythagore cho tam giác \(A B C\) vuông tại \(B\) ta có: \(A B^2+\mathrm{BC}^2=A C^2\).
Suy ra \(B C^2=A C^2-A B^2=17^2-8^2=225\).
Do đó, \(\mathrm{BC}=15(\mathrm{~cm})\).
Diện tích của hình chữ nhật là: \(A B . B C=8 \cdot 15=120\left(\mathrm{~cm}^2\right)\).

Câu hỏi 9.22

97

Chú cún bị xích bởi một sợi dây dài 6 m để canh một mảnh vườn giới hạn bởi các điểm A, B, E, F, D trong hình vuông ABCD có cạnh 5 m như Hình 9.44. Đầu xích buộc cố định tại điểm A của mảnh vườn. Hỏi chú cún có thể chạy đến tất cả các điểm của mảnh vườn mình phải canh không?

Bài 9.22 trang 97 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Đáp ánarrow-down-icon

- Áp dụng định lí Pythagore cho tam giác ABE vuông tại B, có
\(A E^2=A B^2+B E^2=5^2+3^2=34 .\)

Suy ra \(\mathrm{AE}=\sqrt{34} \mathrm{~m}<6 \mathrm{~m}\).
Suy ra chú cún có thể chạy đến điểm \(\mathrm{E}\) do khoảng cách \(\mathrm{AE}\) ngắn hơn sợi dây.
- Áp dụng định lí Pythagore cho tam giác ADF vuông tại D, có
\(A F^2=A D^2+D F^2=5^2+4^2=41 .\)

Suy ra \(A E=\sqrt{41} \mathrm{~m}>6 \mathrm{~m}\).
Suy ra chú cún không thể chạy đến điểm \(\mathrm{F}\) do khoảng cách \(\mathrm{AF}\) dài hơn sợi dây.
- Áp dụng định lí Pythagore cho tam giác ADC vuông tại D, có
\(A C^2=A D^2+D C^2=5^2+5^2=50 .\)

Suy ra \(\mathrm{AE}=5 \sqrt{2} \mathrm{~m}>6 \mathrm{~m}\).
Suy ra chú cún không thể chạy đến điểm \(C\) do khoảng cách \(A C\) dài hơn sợi dây.
Vậy chú cún không thể chạy hết tất cả các điểm của mảnh vườn. Chú chó chỉ có thể chạy đến điểm B, D, E.