Bài tập cuối chương II

Bài tập 1

69

Tìm những số vô tỉ trong các số sau đây:

-6,123(456);\( - \sqrt 4 ;\sqrt {\frac{4}{9}} ;\sqrt {11}; \sqrt{15}\)

Gợi ýarrow-down-icon

+) Các số thập phân vô hạn không tuần hoàn là số vô tỉ

+) Các số không viết được dưới dạng \(\dfrac{a}{b}(a,b \in \mathbb{Z},b \ne 0)\) là số vô tỉ

Đáp ánarrow-down-icon

Vì \(-6,123(456)\) là số thập phân vô hạn tuần hoàn nên không là số vô tỉ

\(- \sqrt 4  =  - 2\) không là số vô tỉ

\(\sqrt {\frac{4}{9}}  = \frac{2}{3}\) không là số vô tỉ

\(\sqrt {11}\) là số vô tỉ vì không thể viết được dưới dạng \(\dfrac{a}{b}(a,b \in \mathbb{Z},b \ne 0)\)

\(\sqrt {15}\) là số vô tỉ vì không thể viết được dưới dạng \(\dfrac{a}{b}(a,b \in \mathbb{Z},b \ne 0)\)

Vậy trong các số trên có \(\sqrt {11};\sqrt {15}\) là số vô tỉ

Chú ý:

Căn bậc hai của một số nguyên tố luôn là số vô tỉ

Bài tập 2

69

So sánh:

a) 4,9(18) và 4,928…;             

b) -4,315 và -4,318..;              

c) \(\sqrt 3\) và \(\sqrt {\frac{7}{2}}\)

Gợi ýarrow-down-icon

+ So sánh 2 số thập phân dương

+ Nếu a < b thì –a > -b

+ Nếu a < b thì \(\sqrt a  < \sqrt b \)

Đáp ánarrow-down-icon

a) 4,9(18) = 4,91818…< 4,928… (vì chữ số hàng phần trăm của 4,91818 là 1 nhỏ hơn chữ số hàng phần trăm của 4,928 là 2)

Vậy 4,9(18) < 4,928

b) Vì 4,315 < 4,318… nên -4,315 > -4,318…

c) Vì 3 < \(\frac{7}{2}\) nên \(\sqrt 3\) < \(\sqrt {\frac{7}{2}}\)

Bài tập 3

69

a) Sắp xếp các số sau theo thứ tự tăng dần:

\(6;\sqrt {35} ;\sqrt {47} ; - 1,7; - \sqrt 3 ;0\)

b) Sắp xếp các số sau theo thứ tự giảm dần:

\(- \sqrt {2,3} ;\sqrt {5\frac{1}{6}} ;0;\sqrt {5,3} ; - \sqrt {2\frac{1}{3}} ; - 1,5\)

Gợi ýarrow-down-icon

Số thực âm <  0 < số thực dương

Viết các số về dạng \(\sqrt a \) hay - \(\sqrt a \)

+) Nếu a < b thì \(\sqrt a \) < \(\sqrt b \)

+) Nếu a < b thì -\(\sqrt a \) > -\(\sqrt b \)

Đáp ánarrow-down-icon

a) Ta có:

\(6 = \sqrt {36} ; - 1,7 =  - \sqrt {2,89}\)

Vì 0 < 2,89 < 3 nên 0> \(- \sqrt {2,89}  >  - \sqrt 3\) hay 0 > -1,7 > \(- \sqrt 3\)

Vì 0 < 35 < 36 < 47  nên \(0 < \sqrt {35}  < \sqrt {36}  < \sqrt {47}\) hay 0 < \(\sqrt {35}  < 6 < \sqrt {47}\)

Vậy các số theo thứ tự tăng dần là: \(- \sqrt 3 ; - 1,7;0;\sqrt {35} ;6;\sqrt {47}\)

b) Ta có:

\(\sqrt {5\frac{1}{6}}  = \sqrt {5,1(6)} ; - \sqrt {2\frac{1}{3}}  =  - \sqrt {2,(3)}\); -1,5 = \(- \sqrt {2,25}\)

Vì 0 < 2,25 < 2,3 < 2,(3) nên 0> \(- \sqrt {2,25}  >  - \sqrt {2,3}  >  - \sqrt {2,(3)}\) hay 0 > -1,5 > \(- \sqrt {2,3}  >  - \sqrt {2\frac{1}{3}}\)

Vì 5,3 > 5,1(6) > 0 nên \(\sqrt {5,3}  > \sqrt {5,1(6)}\)> 0 hay \(\sqrt {5,3}  > \sqrt {5\frac{1}{6}}  > 0\)

Vậy các số theo thứ tự giảm dần là: \(\sqrt {5,3} ;\sqrt {5\frac{1}{6}} ;0\); -1,5; \(- \sqrt {2,3} ; - \sqrt {2\frac{1}{3}}\)

Bài tập 4

69

Tính:

\(a)2.\sqrt 6 .( - \sqrt 6 );\)

\(b)\sqrt {1,44}  - 2.{(\sqrt {0,6} )^2};\)

\(c)0,1.{(\sqrt 7 )^2} + \sqrt {1,69} ;\)

\(d)( - 0,1).{(\sqrt {120} )^2} - \frac{1}{4}.{(\sqrt {20} )^2}\)

Gợi ýarrow-down-icon

\({(\sqrt a )^2} = a\)

Đáp ánarrow-down-icon

\(a)2.\sqrt 6 .( - \sqrt 6 )\)

\(=  - 2.\sqrt 6 .\sqrt 6\)

\(=  - 2.{(\sqrt 6 )^2}\)

\(=  - 2.6\)

\(=-12\)

\( b)\sqrt {1,44}  - 2.{(\sqrt {0,6} )^2}\)

\( = 1,2 - 2.0,6\)

\(= 1,2 - 1,2\)

\(=0\)

\(c)0,1.{(\sqrt 7 )^2} + \sqrt {1,69} \)

\(= 0,1.7 + 1,3 \)

\(= 0,7 + 1,3\)

\(=2\)

\(d)( - 0,1).{(\sqrt {120} )^2} - \frac{1}{4}.{(\sqrt {20} )^2} \)

\(= ( - 0,1).120 - \frac{1}{4}.20\)

\(=  - 12 - 5\)

\(=  - (12 + 5)\)

\(=-17\)

Bài tập 5

69

Tìm số x không âm, biết:

\(a)\sqrt x  - 16 = 0;\)

\(b)2\sqrt x  = 1,5;\)

\(c)\sqrt {x + 4}  - 0,6 = 2,4\)

Gợi ýarrow-down-icon

Nếu \(\sqrt a  = b\) thì \(a = {b^2}\)

Đáp ánarrow-down-icon

\(\begin{array}{l}a)\sqrt x- 16 = 0\\\sqrt x= 16\\x = {16^2}\\x = 256\end{array}\)

Vậy x = 256

\(\begin{array}{l}b)2\sqrt x= 1,5\\\sqrt x= 1,5:2\\\sqrt x= 0.75\\x= {(0,75)^2}\\x= 0,5625\end{array}\)

Vậy x = 0,5625

\(\begin{array}{l}c)\sqrt {x + 4}- 0,6 = 2,4\\\sqrt {x + 4}= 2,4 + 0,6\\\sqrt {x + 4}= 3\\x + 4 = 9\\x = 5\end{array}\)

Vậy x = 5

Bài tập 6

69

Tìm số x trong các tỉ lệ thức sau:

\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}};\\b) - 0,52:x = \sqrt {1,96} :( - 1,5);\\c)x:\sqrt 5= \sqrt 5 :x\end{array}\)

Gợi ýarrow-down-icon

Sử dụng tính chất của tỉ lệ thức: \(\frac{a}{b} = \frac{c}{d} \Rightarrow a.d = b.c\)

Đáp ánarrow-down-icon

\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}}\\ \Rightarrow x.0,75 = ( - 3).7\\ \Rightarrow x = \frac{{( - 3).7}}{{0,75}} =- 28\end{array}\)

Vậy x = 28

\(\begin{array}{l}b) - 0,52:x = \sqrt {1,96} :( - 1,5)\\ - 0,52:x = 1,3:( - 1,5)\\ - 0,52:x =- 1,95\\x = ( - 0,52):( - 1,95)\\x = \frac{4}{{15}}\end{array}\)

Vậy x = \(\frac{4}{{15}}\)

\(\begin{array}{l}c)x:\sqrt 5  = \sqrt 5 :x\\ \Leftrightarrow \frac{x}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{x}\\ \Rightarrow x.x = \sqrt 5 .\sqrt 5 \\ \Leftrightarrow {x^2} = 5\\ \Leftrightarrow \left[ {_{x =  - \sqrt 5 }^{x = \sqrt 5 }} \right.\end{array}\)

Vậy x \(\in \{ \sqrt 5 ; - \sqrt 5 \}\)

Chú ý:

Nếu \({x^2} = a(a > 0)\) thì x = \(\sqrt a\) hoặc x = -\(\sqrt a\)

Bài tập 7

69

Cho \(\frac{a}{b} = \frac{c}{d}\) với b – d \( \ne \) 0; b + 2d \( \ne \) 0. Chứng tỏ rằng:

\(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\)

Gợi ýarrow-down-icon

Sử dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Đáp ánarrow-down-icon

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)

Bài tập 8

69

Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)

Gợi ýarrow-down-icon

Sử dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a - c + e}}{{b - d + f}}\)

Đáp ánarrow-down-icon

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3}\\z = 9.\frac{1}{3} = \frac{9}{3} = 3\end{array}\)

Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)

Bài tập 9

69

Lớp 7A có 45 học sinh. Trong đợt sơ kết Học kì I, số học sinh ở các mức Tốt, Khá, Đạt tỉ lệ với ba số 3;4;2. Tính số học sinh ở mỗi mức, biết trong lớp không có học sinh nào ở mức Chưa đạt.

Gợi ýarrow-down-icon

Gọi số học sinh ở các mức Tốt, Khá, Đạt là x,y,z (\(x,y,z \in \mathbb{N}\))

Sử dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c + e}}{{b + d + f}}\)

Đáp ánarrow-down-icon

Gọi số học sinh ở các mức Tốt, Khá, Đạt là x,y,z (\(x,y,z \in \mathbb{N}\))

Vì lớp 7A có 45 học sinh và không có học sinh nào ở mức Chưa đạt nên x+y+z =45

Vì số học sinh ở các mức Tốt, Khá, Đạt tỉ lệ với ba số 3;4;2 nên \(\frac{x}{3} = \frac{y}{4} = \frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} = \frac{z}{2} = \frac{{x + y + z}}{{3 + 4 + 2}} = \frac{{45}}{9} = 5\\ \Rightarrow x = 3.5 = 15\\y = 4.5 = 20\\z = 2.5 = 10\end{array}\)

Vậy số học sinh ở các mức Tốt, Khá, Đạt lần lượt là: 15 bạn, 20 bạn và 10 bạn.

Bài tập 10

70

Chị Phương định mua 3 kg táo với số tiền định trước. Khi vào siêu thị đúng thời điểm được khuyến mại nên giá táo được giảm 25%. Hỏi với số tiền đó, chị Phương mua được bao nhiêu ki-lô-gam táo?

Gợi ýarrow-down-icon

Số táo mua được và giá táo là 2 đại lượng tỉ lệ nghịch.

Sử dụng tính chất của hai đại lượng tỉ lệ nghịch: x1. y1 = x2. y2

Đáp ánarrow-down-icon

Gọi số táo mua được là x (kg) (x > 0).

Giả sử giá táo trước giảm giá là a thì giá táo sau khi giảm giá là a – 0,25a = 0,75a.

Vì số táo . giá táo = số tiền mua táo (không đổi) nên số táo và giá táo là hai đại lượng tỉ lệ nghịch.

Áp dụng tính chất của 2 đại lượng tỉ lệ nghịch, ta có:

3.a = x. 0,75a nên x = \(\frac{{3.a}}{{0,75.a}} = 4\) (thỏa mãn).

Vậy chị Phương mua được \(4\) kg táo.

Bài tập 11

70

Cứ 15 phút, chị Lan chạy được 2,5 km. Hỏi trong 1 giờ, chị chạy được bao nhiêu ki – lô- mét? Biết rằng vận tốc chạy của chị Lan là không đổi

Gợi ýarrow-down-icon

Với vận tốc không đổi thì quãng đường và thời gian là 2 đại lượng tỉ lệ thuận

Chú ý đơn vị

Đáp ánarrow-down-icon

Gọi số km mà chị Lan chạy được trong 1 giờ = 60 phút là x (km) (x > 0)

Vì vận tốc không đổi nên quãng đường và thời gian là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có:

\(\frac{{2,5}}{{15}} = \frac{x}{{60}} \Rightarrow x = \frac{{2,5.60}}{{15}} = 10\)(thoả mãn)

Vậy trong 1 giờ, chị Lan chạy được 10 km

Bài tập 12

70

Một công nhân trong 30 phút làm được 20 sản phẩm. Hỏi để làm được 50 sản phẩm người đó cần bao nhiêu phút? Biết năng suất làm việc của người đó không đổi.

Gợi ýarrow-down-icon

Năng suất làm việc không đổi thì thời gian và số sản phẩm làm được là 2 đại lượng tỉ lệ thuận

Đáp ánarrow-down-icon

Gọi thời gian cần thiết để người đó làm được 50 sản phẩm là x (phút) ( x > 0)

Vì năng suất làm việc không đổi thì thời gian và số sản phẩm làm được là 2 đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có:

\(\frac{{30}}{{x}} = \frac{{20}}{50} \Rightarrow x = \frac{{30.50}}{{20}} = 75\) (thỏa mãn)

Vậy để người đó làm được 50 sản phẩm thì cần 75 phút.

Bài tập 13

70

Cứ đổi 1 158 000 đồng Việt Nam thì được 50 đô la Mỹ.

Để có 750 đô la Mỹ thì cần đổi bao nhiêu đồng Việt Nam?

Gợi ýarrow-down-icon

Số tiền đô la Mỹ và số tiền Việt Nam quy đổi cho nhau là 2 đại lượng tỉ lệ thuận

Đáp ánarrow-down-icon

Gọi số tiền Việt Nam cần có để đổi được 750 đô la Mỹ là x (đồng) (x >0)

Vì số tiền đô la Mỹ và số tiền Việt Nam quy đổi cho nhau là 2 đại lượng tỉ lệ thuận nên theo tính chất của 2 đại lượng tỉ lệ thuận, ta có:

\(\frac{{1158000}}{{50}} = \frac{x}{{750}} \Rightarrow x = \frac{{1158000.750}}{{50}} = 17370000\) (thỏa mãn)

Vậy số tiền Việt Nam cần có để đổi được 750 đô la Mỹ là 17 370 000 đồng

Bài tập 14

70

Trong tháng trước, cứ 6 giờ, dây chuyền làm ra 1 000 sản phẩm. Nhưng trong tháng này, do được cải tiến nên năng suất của dây chuyền bằng 1,2 lần năng suất tháng trước. Hỏi trong tháng này để làm ra 1 000 sản phẩm như thế thì dây chuyền đó cần bao nhiêu thời gian?

Gợi ýarrow-down-icon

Với cùng khối lượng công việc, năng suất và thời gian hoàn thành là 2 đại lượng tỉ lệ nghịch.

Sử dụng tính chất của hai đại lượng tỉ lệ nghịch: x1. y1 = x2. y2

Đáp ánarrow-down-icon

Gọi thời gian dây chuyền cần để hoàn thành 1 000 sản phẩm là x (giờ) (x > 0)

Giả sử năng suất của tháng trước là a thì năng suất của tháng này là 1,2.a

Vì khối lượng công việc không đổi nên năng suất và thời gian hoàn thành là 2 đại lượng tỉ lệ nghịch nên theo tính chất của 2 đại lượng tỉ lệ nghịch, ta có:

6.a = x. 1,2a nên \(x = \frac{{6.a}}{{1,2.a}} = 5\) (thỏa mãn)

Vậy cần 5 giờ để dây chuyền hoàn thành 1 000 sản phẩm như thế

Bài tập 15

70

Đồng trắng là một hợp kim của đồng với niken. Một hợp kim đồng trắng có khối lượng của đồng và niken tỉ lệ với 9 và 11. Tính khối lượng của đồng và niken cần dùng để tạo ra 25 kg hợp kim đó.

Gợi ýarrow-down-icon

+ Gọi khối lượng của đồng và niken cần dùng là x, y (kg) (x,y > 0)

+ Biểu diễn mối liên hệ giữa khối lượng của đồng và niken

Sử dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{{a + c}}{{b + d}}\)

Đáp ánarrow-down-icon

Gọi khối lượng của đồng và niken cần dùng để tạo ra 25 kg hợp kim đó là x, y (kg) (x,y > 0), ta có x + y = 25

Vì khối lượng của đồng và niken tỉ lệ với 9 và 11 nên \(\frac{x}{9} = \frac{y}{{11}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có

\(\begin{array}{l}\frac{x}{9} = \frac{y}{{11}} = \frac{{x + y}}{{9 + 11}} = \frac{{25}}{{20}} = 1,25\\ \Rightarrow x = 9.1,25 = 11,25\\y = 11.1,25 = 13,75\end{array}\)

Vậy cần 11,25 kg đồng và 13,75 kg niken

Bài tập 16

70

Cho ba hình chữ nhật có cùng diện tích. Biết chiều rộng của ba hình chữ nhật tỉ lệ với ba số 1;2;3. Tính chiều dài của mỗi hình chữ nhật đó, biết tổng chiều dài của ba hình chữ nhật là 110 cm.

Gợi ýarrow-down-icon

+ Gọi chiều dài 3 hình chữ nhật lần lượt là x,y,z (x,y,z > 0)

+ Với các hình chữ nhật có cùng diện tích, chiều rộng và chiều dài là 2 đại lượng tỉ lệ nghịch.

Sử dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c + e}}{{b + d + f}}\)

Đáp ánarrow-down-icon

Gọi chiều dài 3 hình chữ nhật lần lượt là x,y,z (cm) (x,y,z > 0).

Do tổng chiều dài của ba hình chữ nhật là 110 cm nên x+y+z=110

Vì 3 hình chữ nhật có: chiều dài . chiều rộng = diện tích (không đổi) nên chiều rộng và chiều dài là 2 đại lượng tỉ lệ nghịch.

Áp dụng tính chất 2 đại lượng tỉ lệ nghịch, ta có:

1.x = 2.y = 3.z

\(\begin{array}{l} \Rightarrow \frac{{1.x}}{6} = \frac{{2.y}}{6} = \frac{{3.z}}{6}\\ \Rightarrow \frac{x}{6} = \frac{y}{3} = \frac{z}{2}\end{array}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\frac{x}{6} = \frac{y}{3} = \frac{z}{2} = \frac{{x + y + z}}{{6 + 3 + 2}} = \frac{{110}}{{11}} = 10\\ \Rightarrow x = 6.10 = 60;\\y = 3.10 = 30;\\z = 2.10 = 20\end{array}\)

Vậy chiều dài của mỗi hình chữ nhật đó lần lượt là 60 cm, 30 cm, 20 cm.

Bài tập 17

70

Hình 9a mô tả hình dạng của một hộp sữa và lượng sữa chứa trong hộp đó. Hình 9b mô tả hình dạng của một hộp sữa và lượng sữa chứa trong hộp khi đặt hộp ngược lại. Tính tỉ số của thể tích sữa có trong hộp và thể tích của cả hộp.

Gợi ýarrow-down-icon

Tính tỉ lệ thể tích phần chứa sữa và phần không chứa sữa.

Với diện tích đáy không đổi thì thể tích và chiều cao của hình hộp là 2 đại lượng tỉ lệ thuận

Đáp ánarrow-down-icon

Xét hình 9b, phần hộp không chứa sữa có dạng hình hộp chữ nhật với đáy là đáy của hộp sữa và chiều cao là 12 – 7 = 5 (cm)

Xét hình 9a, phần hộp chứa sữa có dạng hình hộp chữ nhật với đáy là đáy của hộp sữa và chiều cao là 6 cm.

Vì diện tích đáy không đổi thì thể tích và chiều cao của hình hộp là 2 đại lượng tỉ lệ thuận nên thể tích phần hộp không chứa sữa với phần hộp chứa sữa là tỉ lệ của chiều cao hình hộp không chứa sữa và chiều cao hình hộp có chứa sữa và là \(\frac{5}{6}\). Tức là thể tích phần hộp chứa sữa là 6 phần, phần không chứa sữa là 5 phần, thể tích cả hộp là: 5+6 = 11 phần

Như vậy, tỉ số của của thể tích sữa có trong hộp và thể tích của cả hộp là \(\frac{6}{{11}}\)