Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Khởi động

74

Hình 15 minh họa vị trí của ba khu du lịch Yên Tử, Tuần Châu và Vân Đồn (ở tỉnh Quảng Ninh).

Trong hai vị trí Yên Tử và Tuần Châu, vị trí nào gần Vân Đồn hơn?

Gợi ýarrow-down-icon

Học sinh có thể lấy thước kẻ (có kẻ vạch đo) để đo khoảng cách từ Yên Tử đến Vân Đồn và từ Tuần Châu đến Vân Đồn rồi so sánh.

Đáp ánarrow-down-icon

Trong hai vị trí Yên Tử và Tuần Châu thì Tuần Châu gần Vân Đồn hơn.

Hoạt động 1

74

Quan sát tam giác ABC ở Hình 17.

 

a) So sánh hai cạnh AB và AC.

b) So sánh góc B (đối diện với cạnh AC) và góc C (đối diện với cạnh AB). 

Gợi ýarrow-down-icon

a) Dựa vào độ dài cạnh đã cho để so sánh hai cạnh AB và AC.

b) Tam giác ABC là tam giác có một góc vuông nên hai góc còn lại sẽ nhỏ hơn 90°.

Đáp ánarrow-down-icon

a) Trong tam giác ABC:

 \(AB = 3\) cm, \(AC = 5\) cm.

Vậy AB < AC.

b) Trong tam giác ABC có \(\widehat B = 90^\circ\)mà tổng ba góc trong một tam giác bằng 180°.

\(\Rightarrow\)  Góc C < 90°. Hay \(\widehat B > \widehat C\)

Luyện tập vận dụng 1

74

Cho tam giác MNP có \(MN = 4\)cm, \(NP = 5\)cm, \(MP = 6\) cm. Tìm góc nhỏ nhất, góc lớn nhất của tam giác MNP.

Gợi ýarrow-down-icon

Góc lớn nhất trong tam giác là góc đối diện với cạnh lớn nhất trong tam giác.

Góc nhỏ nhất trong tam giác là góc đối diện với cạnh nhỏ nhất trong tam giác.

Đáp ánarrow-down-icon

Trong tam giác MNP:  \(MN < NP < MP\).

\(\Rightarrow\) Cạnh MN nhỏ nhất, MP lớn nhất trong tam giác MNP.

Vậy góc nhỏ nhất của tam giác MNP là góc P (đối diện với cạnh MN), góc lớn nhất của tam giác MNP là góc N (đối diện với cạnh MP) 

Hoạt động 2

75

Quan sát tam giác ABC ở Hình 19.

a) So sánh hai góc B và C.

b) So sánh cạnh AB (đối diện với góc C) và cạnh AC (đối diện với góc B).

Gợi ýarrow-down-icon

a) Tam giác ABC là tam giác có một góc vuông nên hai góc còn lại sẽ nhỏ hơn 90°.

b) Học sinh có thể dùng thước kẻ (có chia vạch đo) để so sánh hai cạnh hoặc dựa vào độ dài được kẻ của các cạnh trên hình (mỗi một cạnh ô vuông là 1 cm).

Đáp ánarrow-down-icon

a) Trong tam giác ABC có \(\widehat B = 90^\circ\)mà tổng ba góc trong một tam giác bằng 180°.

\(\Rightarrow\) Góc C < 90°. Hay \(\widehat B > \widehat C\).

b) Ta có: \(AB = 3\)cm, \(AC = 5\) cm. Vậy AB < AC.

Luyện tập vận dụng 2

75

a) Cho tam giác DEG có góc E là góc tù. So sánh DE và DG.

b) Cho tam giác MNP có \(\widehat M = 56^\circ\)\(\widehat N = 65^\circ\). Tìm cạnh nhỏ nhất, cạnh lớn nhất của tam giác MNP.

Gợi ýarrow-down-icon

a) So sánh hai góc đối diện với hai cạnh để so sánh hai cạnh. (Góc đối diện với cạnh lớn hơn thì cạnh lớn hơn)

b) Cạnh nhỏ nhất trong tam giác là cạnh đối diện với góc nhỏ nhất trong tam giác.

Cạnh lớn nhất trong tam giác là cạnh đối diện với góc lớn nhất trong tam giác.

Đáp ánarrow-down-icon

a)

Trong tam giác DEG có góc E là góc tù (góc > 90°). Mà DG là cạnh đối diện với góc E nên DG là cạnh lớn nhất trong tam giác.

Vậy DE < DG.

b)

Tam giác MNP có \(\widehat M = 56^\circ\)\(\widehat N = 65^\circ\). Mà tổng ba góc trong một tam giác bằng 180°. Vậy \(\widehat P = 180^\circ  - 56^\circ  - 65^\circ  = 59^\circ\).

Ta thấy: \(\widehat M < \widehat P < \widehat N\). Hay cạnh nhỏ nhất của tam giác MNP là NP (đối diện với góc M), cạnh lớn nhất của tam giác MNP là MP (đối diện với góc N).

Hoạt động 3

75

Bạn An có hai con đường đi từ nhà đến trường. Đường đi thứ nhất là đường đi thẳng từ nhà đến trường, đường đi thứ hai là đường đi thẳng từ nhà đến hiệu sách rồi đi thẳng từ hiệu sách đến trường (Hình 20). Theo em, bạn An đi từ nhà đến trường theo đường nào sẽ gần hơn?

Gợi ýarrow-down-icon

Học sinh có thể lấy thước đo (có chia kẻ vạch) để đo hai quãng đường rồi so sánh.

Đáp ánarrow-down-icon

Bạn An đi đường đi thứ nhất là đường đi thẳng từ nhà đến trường sẽ gần hơn đường đi thứ hai là đường đi thẳng từ nhà đến hiệu sách rồi đi thẳng từ hiệu sách đến trường.

Hoạt động 4

75

Bạn Thảo cho rằng tam giác ABC trong Hình 21 có \(AB = 3\)cm, \(BC = 2\)cm, \(AC = 4\)cm.

a) Hãy sử dụng thước thẳng (có chia đơn vị) để kiểm tra lại số đo độ dài ba cạnh của tam giác ABC mà bạn Thảo đã nói.

b) So sánh \(AB + BC\)và AC.

Gợi ýarrow-down-icon

a) Học sinh sử dụng thước thẳng (có chia đơn vị) để kiểm tra lại số đo độ dài ba cạnh của tam giác ABC.

b) Dựa vào độ dài của các cạnh để so sánh \(AB + BC\) và AC.

Đáp ánarrow-down-icon

a) Bạn Thảo nói đúng.

b) \(AB + BC = 3 + 2 = 5 > AC = 4\).

Vậy  \(AB + BC\) > AC.

Luyện tập vận dụng 3

76

Cho tam giác ABC có \(AB = 2\)cm, \(BC = 4\)cm. So sánh hai cạnh AC và AB.

Gợi ýarrow-down-icon

Trong một tam giác, hiệu độ dài hai cạnh bất kì luôn nhỏ hơn độ dài cạnh còn lại.

Đáp ánarrow-down-icon

Ta có: \(BC - AC = 4 - 2 = 2\).

Vậy độ dài cạnh AC lớn hơn 2 hay AC > AB (vì\(AB = 2\)cm).

Bài tập 1

76

Cho tam giác MNP có  \(MN = 6\)cm, \(NP = 8\)cm, \(PM = 7\)cm. Tìm góc nhỏ nhất, góc lớn nhất của tam giác MNP.

Gợi ýarrow-down-icon

Góc lớn nhất (nhỏ nhất) trong tam giác là góc đối diện với cạnh lớn nhất (nhỏ nhất) trong tam giác đó.

Đáp ánarrow-down-icon

Trong tam giác MNP ta có: \(MN < MP < NP\) (6 < 7 < 8).

Vậy góc lớn nhất trong tam giác MNP là góc M (đối diện với cạnh NP) và góc nhỏ nhất trong tam giác MNP là góc P (đối diện với cạnh MN).

Bài tập 2

76

Bạn Hoa đi học từ nhà đến trường bằng cách đi xe buýt dọc theo đường Lê Quý Đôn và xuống xe tại một trong hai điểm dừng N hoặc P, rồi từ đó đi bộ đến trường T (Hình 22). Bạn Hoa nên xuống ở điểm dừng nào để quãng đường đi bộ đến trường ngắn hơn?

Gợi ýarrow-down-icon

Để biết bạn Hoa nên xuống ở điểm dừng nào, ta so sánh hai cạnh PT và NT với nhau bằng cách so sánh hai góc đối diện của chúng

Đáp ánarrow-down-icon

Ta thấy: \(\widehat P < \widehat N\)(50° < 70°).

Vậy PT (cạnh đối diện với góc N) > NT (cạnh đối diện với góc P). Hay bạn Hoa nên xuống ở điểm dừng P rồi đi bộ đến trường.

Bài tập 3

76

Theo https://vietnamnet.vn ngày 01/10/2020, sóng 4G có thể phủ kín đến bán kính 100 km.

Người ta đặt một trạm phát sóng 4G tại vị trí A. Có một đảo nhỏ (tại vị trí B) chưa biết khoảng cách đến vị trí A nhưng lại biết khoảng cách từ đảo đó đến một khách sạn (tại vị trí C) là 75 km và khách sạn đó cách vị trí A là 20 km (Hình 23). Sóng 4G của trạm phát sóng A có thể phủ đến đảo đó được không? Vì sao?

Gợi ýarrow-down-icon

Muốn biết trạm phát sóng A có thể phủ sóng đến đảo B được hay không, ta so sánh độ dài cạnh AB với 100.

Tổng hai cạnh bất kì trong một tam giác luôn lớn hơn độ dài cạnh còn lại.

Đáp ánarrow-down-icon

Ta xét tam giác ABC: \(AC = 20\) km, \(BC = 75\) km.

\(AC + BC = 20 + 75 = 95\) km. Mà tổng hai cạnh bất kì trong một tam giác luôn lớn hơn độ dài cạnh còn lại.

Hay \(AC + BC = 95\) > AB.

Do đó, AB < 100.

Vậy sóng 4G của trạm phát sóng A có thể phủ đến đảo B. (Vì sóng 4G có thể phủ kín đến bán kính 100 km).

Bài tập 4

77

Bộ ba số đo độ dài nào trong mỗi trường hợp sau không thể là độ dài ba cạnh của một tam giác?

a) 8 cm, 5 cm, 3 cm;                  

b) 8 cm, 5 cm, 4 cm;                  

c) 8 cm, 5 cm, 2 cm.

Gợi ýarrow-down-icon

Hiệu hai cạnh bất kì trong một tam giác luôn nhỏ hơn cạnh còn lại trong tam giác đó.

Đáp ánarrow-down-icon

a) Ta thấy: 

\(\begin{array}{l}8 - 5 = 3 = 3\\8 - 3 = 5 = 5\end{array}\)

Vậy bộ ba số đo độ dài 8 cm, 5 cm, 3 cm không thể là độ dài ba cạnh của một tam giác.

b) Ta thấy: 

\(\begin{array}{l}8 - 5 = 3 \lt 4\\8 - 4 = 4\lt4\\5 - 4 = 1 \lt8\end{array}\)

Vậy bộ ba số đo độ dài 8 cm, 5 cm, 4 cm có thể là độ dài ba cạnh của một tam giác.

c) Ta thấy: \(8 - 5 = 3 > 2\).

Vậy bộ ba số đo độ dài 8 cm, 5 cm, 2 cm không thể là độ dài ba cạnh của một tam giác. 

Bài tập 5

77

Con mèo của bạn Huê bị mắc kẹt trên gờ tường cao 4 m. Bác bảo vệ sử dụng một cái thang để đưa mèo xuống giúp bạn Huê. Bác đặt thang dựa vào gờ tường (Hình 24a), khoảng cách từ chân thang đến điểm chạm vào gờ tường là \(AB = 4,5\)m. Hình 24b mô tả hình ảnh chiếc thang dựa vào tường trong Hình 24a. Bạn Huê khẳng định chân thang cách chân tường là \(BH = 0,5\)m. Khẳng định của bạn Huê có đúng không? Vì sao?

Gợi ýarrow-down-icon

Muốn biết bạn Huê nói đúng hay không, ta so sánh độ dài cạnh BH với hiệu của hai cạnh còn lại trong tam giác là AB và AH.

Hiệu hai cạnh trong một tam giác luôn nhỏ hơn độ dài cạnh còn lại của tam giác đó

Đáp ánarrow-down-icon

Ta có: \(AH = 4\)m, \(AB = 4,5\)m.

\(AB - AH = 4,5 - 4 = 0,5\). Mà hiệu hai cạnh trong một tam giác luôn nhỏ hơn độ dài cạnh còn lại của tam giác đó nên 0,5 < BH.

Bạn Huê khẳng định chân thang cách chân tường là \(BH = 0,5\) m là sai.

Bài tập 6

77

Người ta cần làm đường dây điện từ một trong hai trạm biến áp A, B đến trạm biến áp C trên đảo (Hình 25).

a) Đường dây điện xuất phát từ trạm biến áp nào đến trạm biến áp C sẽ ngắn hơn.

b) Bạn Bình ước lượng: Nếu làm cả hai đường dây điện từ A và B đến C thì tổng độ dài đường dây khoảng 6 200 m. Bạn Bình ước lượng có đúng không?

Gợi ýarrow-down-icon

a) Muốn biết đường dây xuất phát từ trạm biến áp nào đến C sẽ ngắn hơn ta so sánh hai cạnh AC và BC (bằng cách so sánh hai góc đối diện của chúng. Góc nào nhỏ hơn thì cạnh đối diện ngắn hơn).

b) Tổng độ dài của hai cạnh bất kì trong một tam giác luôn lớn hơn độ dài cạnh còn lại.

Đáp ánarrow-down-icon

a) Ta có: \(\widehat B = 45^\circ  < \widehat A = 60^\circ\). Vậy AC (đối diện góc B) < BC (đối diện góc A) hay đường dây điện xuất phát từ trạm biến áp A đến trạm biến áp C sẽ ngắn hơn.

b) Áp dụng bất đẳng thức tam giác trong tam giác ABC có: \(AC + BC > AB = 6230\) m. Nên bạn Bình ước lượng: Nếu làm cả hai đường dây điện từ A và B đến C thì tổng độ dài đường dây khoảng  6 200 m là sai. 

Bài tập 7

78

Cho tam giác ABC có góc A tù. Trên cạnh AC lần lượt lấy các điểm D, E, G sao cho D nằm giữa A và E; E nằm giữa D và G; G nằm giữa E và C (Hình 26). Sắp xếp các đoạn thẳng BA, BD, BE, BG, BC theo thứ tự tăng dần. Giải thích vì sao?

Gợi ýarrow-down-icon

Muốn sắp xếp được các đoạn thẳng theo thứ tự tăng dần, ta so sánh chúng với BA và cạnh còn lại trong tam giác tương ứng

Đáp ánarrow-down-icon

Xét tam giác BAD:

+ Góc A tù (góc > 90°) nên cạnh BD là cạnh lớn nhất trong tam giác này (đối diện với góc A).

Nên BD > BA.

+ Góc A tù nên góc ABD và góc ADB là góc nhọn → góc BDE là góc tù (ba điểm A, D, E thẳng hàng hay góc ADE =180°). Vậy BE (đối diện với góc BDE) > BD.

Tương tự, ta có:

+ Góc BDE là góc tù nên góc DBE và góc DEB là góc nhọn → góc BEG là góc tù. Vậy BG > BE.

+ Góc BEG là góc tù nên góc EBG và góc EGB là góc nhọn → góc BGC là góc tù. Vậy BC > BG.

Vậy BA < BD <BE < BG < BC.

Hay các đoạn thẳng BA, BD, BE, BG, BC theo thứ tự tăng dần là: BA, BD, BE, BG, BC.