Bài 11: Tính chất ba đường phân giác của tam giác Tr108
Khởi động
108
Bạn Ngân gấp một miếng bìa hình tam giác để các nếp gấp tạo thành ba tia phân giác của các góc ở đỉnh của tam giác đó (Hình 109).
Ba nếp gấp đó có đặc điểm gì?
Gợi ý
Quan sát Hình 109 để đưa ra đặc điểm của ba nếp gấp.
Đáp án
Ba nếp gấp chia ba góc tại ba đỉnh của tam giác thành hai góc bằng nhau tương ứng với mỗi đỉnh. Và chúng cắt nhau tại một điểm.
Hoạt động 1
108
Trong tam giác ABC, tia phân giác của góc A cắt cạnh BC tại điểm D (Hình 110). Các đầu mút của đoạn thẳng AD có đặc điểm gì?
Gợi ý
Quan sát Hình 110 để đưa ra đặc điểm của hai đầu mút đoạn thẳng AD.
Đáp án
Các đầu mút của đoạn thẳng AD có đặc điểm: đầu mút A là đỉnh của tam giác, đầu mút D thuộc cạnh BC.
Luyện tập vận dụng 1
109
Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung tuyến của tam giác đó.
Gợi ý
Chứng minh dựa vào việc chứng minh hai tam giác bằng nhau.
Đáp án
Xét hai tam giác ABD và ACD:
AB = AC (tam giác ABC cân tại A);
\(\widehat {BAD} = \widehat {CAD}\)(AD là phân giác của góc A);
AD chung.
Vậy \(\Delta ABD = \Delta ACD\)(c.g.c).
Suy ra: BD = CD ( 2 cạnh tương ứng) hay D là trung điểm của cạnh BC. Vậy AD là đường trung tuyến của tam giác ABC.
Hoạt động 2
109
Quan sát các đường phân giác AD, BE, CK của tam giác ABC (Hình 114), cho biết ba đường phân giác đó có cùng đi qua một điểm hay không.
Gợi ý
Quan sát Hình 114 để xem các đường phân giác AD, BE, CK có cùng đi qua một điểm hay không.
Đáp án
Các đường phân giác AD, BE, CK có cùng đi qua một điểm là điểm I.
Luyện tập vận dụng 2
110
Tìm số đo x trong Hình 115.
Gợi ý
Dựa vào tính chất của ba đường phân giác trong tam giác.
Đáp án
I là giao điểm của hai đường phân giác góc B và góc C.
Vậy I cũng là giao điểm của đường phân giác góc A với góc B và góc C.
Hay AI là phân giác của góc A. Vậy \(x = 30^\circ \).
Luyện tập vận dụng 3
111
Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB. Chứng minh rằng: IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.
Gợi ý
Dựa vào tính chất của ba đường phân giác trong tam giác và tính chất của đường trung tuyến (đi qua trung điểm và vuông góc tại trung điểm).
Đáp án
Gọi D là giao điểm của IC và MN; E là giao điểm của IA và PN; F là giao điểm của IB và PM.
Ta có: Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác hay IM = IN = IP.
IA là đường trung trực của cạnh PN; IB là đường trung trực của cạnh PM.
Bài tập 1
111
Tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.
a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?
b) Các tam giác ANP, BPM, CMN có là tam giác cân không? Vì sao?
Gợi ý
a) Dựa vào tính chất của ba đường phân giác trong tam giác: Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác.
b) Dựa vào chứng minh các cặp tam giác bằng nhau.
Đáp án
a) Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác hay IM = IN = IP.
Vậy các tam giác IMN, INP, IPM có là tam giác cân tại I.