Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc- cạnh - góc

Khởi động

88

Có ba trạm quan sát A, B, C trong đó trạm quan sát C ở giữa hồ.\(45^o\)

Khởi động trang 88 Toán 7 Tập 2 Cánh diều

Người ta muốn đo khoảng cách từ A và từ B đến C. Do không thể đo trực tiếp được các khoảng cách trên nên người ta làm như sau (Hình 55):

- Đo góc BAC được \(60^o\), đo góc ABC được \(45^o\);

- Kẻ tia Ax sao cho \(\widehat{BAx}\) = \(60^o\) , kẻ tia By sao cho \(\widehat{ABy}\) = \(45^o\), xác định giao điểm D của hai tia đó;

- Đo khoảng cách AD và BD. Ta có AC = AD và BC = BD.

Tại sao lại có hai đẳng thức trên?

Đáp ánarrow-down-icon

Xét ∆ABC và ∆ABD có:

\(\widehat{BAC} = \widehat{BAD} = 60^o\)

AB chung

\(\widehat{ABC} = \widehat{ABD} = 45^o\)

Suy ra ∆ABC = ∆ABD (g - c - g).

Do đó AC = AD (2 cạnh tương ứng) và BC = BD (2 cạnh tương ứng).

Hoạt động 1

88

Cho tam giác ABC (Hình 56).

Cho tam giác ABC (Hình 56)

Những góc nào của tam giác ABC có cạnh thuộc đường thẳng AB?

Trong tam giác ABC (Hình 56), ta gọi góc A và góc B là hai góc kề cạnh AB. Tương tự, góc B và góc C là hai góc kề cạnh BC, góc C và góc A là hai góc kề cạnh CA.

Đáp ánarrow-down-icon

Những góc của tam giác ABC có cạnh thuộc đường thẳng AB là: \(\widehat{CAB}\) và \(\widehat{CBA}\).

Hoạt động 2

88

Cho hai tam giác ABC và A’B’C’ (Hình 57) có:  \(\widehat A = \widehat {A'} = 60^\circ\), AB = A’B’ = 3 cm, \(\widehat B = \widehat {B'} = 45^\circ\). Bằng cách đếm số ô vuông, hãy so sánh BC và B’C’. Từ đó có thể kết luận được hai tam giác ABC và A’B’C’ bằng nhau hay không?

Gợi ýarrow-down-icon

Đếm số ô vuông của cạnh BC và B’C’ rồi xem hai tam giác ABC và A’B’C’ có bằng nhau không.

Đáp ánarrow-down-icon

BC = B’C’ = 4 (đường chéo của 4 ô vuông).

Tam giác ABC và tam giác A’B’C’ có: BC = B’C’, AB = A’B’, \(\widehat B = \widehat {B'}\).

Vậy \(\Delta ABC = \Delta A'B'C'\)(c.g.c)

Luyện tập vận dụng 1

89

Cho hai tam giác ABC và A’B’C’ thỏa mãn: BC = B’C’ = 3 cm, \(\widehat B = \widehat {B'} = 60^\circ ,\widehat C = 50^\circ ,\widehat {A'} = 70^\circ \). Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?

Gợi ýarrow-down-icon

Ta so sánh hai tam giác ABC và A’B’C’.

Đáp ánarrow-down-icon

Tổng ba góc trong một tam giác bằng 180°. Vậy trong tam giác A’B’C’ có \(\widehat {C'} = 180^\circ  - 70^\circ  - 60^\circ  = 50^\circ\).

Xét hai tam giác ABC và A’B’C’ có:

     \(\widehat B = \widehat {B'} = 60^\circ ;\)

     BC = B’C’ ( = 3 cm)

     \(\widehat C = \widehat {C'} = 50^\circ\)

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g) 

Luyện tập vận dụng 2

89

Giải thích bài toán ở phần mở đầu.

Gợi ýarrow-down-icon

Chứng minh tam giác ABC bằng tam giác ABD theo trường hợp góc cạnh góc.

Nếu một cạnh và hai góc liền kề cạnh đó của tam giác này bằng một cạnh và hai góc liền kề tương ứng của tam giác kia thì hai tam giác này bằng nhau.

Đáp ánarrow-down-icon

Xét hai tam giác ABC và ABD có: \(\widehat {CAB} = \widehat {DAB} = 60^\circ ,\widehat {ABC} = \widehat {ABD} = 45^\circ\), AB chung.

Vậy \(\Delta ABC = \Delta ABD\) (g.c.g). 

Suy ra AC = AD và BC = BD ( 2 cạnh tương ứng)

Bài tập 1

91

Cho hai tam giác ABC và A’B’C’ thỏa mãn: AB = A’B’, \(\widehat A = \widehat {A'},\widehat C = \widehat {C'}\). Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?

Gợi ýarrow-down-icon

So sánh hai tam giác ABC và A’B’C’.

Tổng ba góc trong một tam giác bằng 180°.

Đáp ánarrow-down-icon

Vì \(\widehat A = \widehat {A'},\widehat C = \widehat {C'}\)mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat {B'}\).

Xét hai tam giác ABC và A’B’C’ có: \(\widehat A = \widehat {A'}\), AB = A’B’, \(\widehat B = \widehat {B'}\).

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g)

Bài tập 2

91

Cho Hình 65 có AM = BN, \(\widehat A = \widehat B\). Chứng minh: OA = OB, OM = ON.

Gợi ýarrow-down-icon

Chứng minh tam giác AOM bằng tam giác BON.

Đáp ánarrow-down-icon

Ta có:  \(\widehat A = \widehat B\)

Mà 2 góc này ở vị trí so le trong nên AM // BN

\(\Rightarrow \widehat M = \widehat N\)(2 góc so le trong).

Xét hai tam giác AOM và BON có: \(\widehat A = \widehat B\), AM = BN, \(\widehat M = \widehat N\).

Vậy \(\Delta AOM = \Delta BON\) (g.c.g)

Do đó OA = OB, OM = ON. (2 cạnh tương ứng).

Bài tập 3

92

Cho Hình 66 có \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\). Chứng minh MN = QP, MP = QN.

Gợi ýarrow-down-icon

Chứng minh hai tam giác MNQ bằng tam giác QPM.

Đáp ánarrow-down-icon

Ta có: tổng ba góc trong một tam giác bằng 180° và \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\)nên \(\widehat {PQM} = \widehat {NPQ}\).

Xét hai tam giác MNQ và QPM có:

     \(\widehat {PMQ} = \widehat {NQM}\)

     MQ chung

     \(\widehat {PQM} = \widehat {NPQ}\)

Vậy \(\Delta MNQ = \Delta QPM\)(g.c.g). Do đó MN = QP, MP = QN ( 2 cạnh tương ứng)

Bài tập 4

92

Cho Hình 67 có \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,DH = CK,\widehat {DAB} = \widehat {CBA}\). Chứng minh AD = BC.

Gợi ýarrow-down-icon

Chứng minh tam giác AHD bằng tam giác BKC.

Đáp ánarrow-down-icon

Ta có: \(\widehat {DAB} = \widehat {CBA} \to \widehat {HAD} = \widehat {KBC}\)(Hai góc này là hai góc bù của góc DAB và CBA).

Mà tổng ba góc trong tam giác bằng 180° và \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,\widehat {HAD} = \widehat {KBC}\) nên \(\widehat {ADH} = \widehat {BCK}\).

Xét hai tam giác AHD và tam giác BKC có:

     \(\widehat {AHD} = \widehat {BKC}\);

     HD = KC;

     \(\widehat {ADH} = \widehat {BCK}\).

Vậy \(\Delta AHD = \Delta BKC\)(g.c.g) nên AD = BC ( 2 cạnh tương ứng)

Bài tập 5

92

Cho tam giác ABC có \(\widehat B > \widehat C\). Tia phân giác góc BAC cắt cạnh BC tại điểm D.

a) Chứng minh \(\widehat {ADB} < \widehat {ADC}\).

b) Kẻ tia Dx nằm trong góc ADC sao cho \(\widehat {ADx} = \widehat {ADB}\). Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh: \(\Delta ABD = \Delta AED,AB < AC\)

Gợi ýarrow-down-icon

a) Tổng ba góc trong một tam giác bằng 180°.

b) Chứng minh \(\Delta ABD = \Delta AED\) theo trường hợp g.c.g và AB < AC vì cạnh đối diện với góc lớn hơn thì lớn hơn.

Đáp ánarrow-down-icon

a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).

Mà \(\widehat B > \widehat C\) nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).

Tổng ba góc trong một tam giác bằng 180° nên:

\(\begin{array}{l}\widehat B + \widehat {BAD} \gt\widehat C + \widehat {CAD}\\ \to 180^\circ- (\widehat B + \widehat {BAD})\lt180^\circ- (\widehat C + \widehat {CAD})\\ \to \widehat {ADB}\lt\widehat {ADC}\end{array}\)

b) Xét hai tam giác ADB và tam giác ADE có:

     \(\widehat {ADB} = \widehat {ADE}\);

     AD chung;

     \(\widehat {BAD} = \widehat {EAD}\).

Vậy \(\Delta ABD = \Delta AED\) (g.c.g)

Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).

Bài tập 6

92

Cho \(\Delta ABC = \Delta MNP\). Tia phân giác của góc BAC và NMP lần lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ.

Gợi ýarrow-down-icon

Chứng minh tam giác ABD bằng tam giác MNQ.

Đáp ánarrow-down-icon

Ta có: \(\Delta ABC = \Delta MNP\) nên theo tính chất 2 tam giác bằng nhau, ta có:

     \(\begin{array}{l}\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\\AB = MN,BC = NP,AC = NP.\end{array}\)

Mà AD và MQ lần lượt là phân giác của góc BAC và NMP nên \(\widehat {BAD} = \widehat {NMQ} = \dfrac{1}{2}\widehat {BAC} = \dfrac{1}{2}\widehat {NMP}\).

Xét hai tam giác ABD và MNQ có:

     \(\widehat {BAD} = \widehat {NMQ}\);

     AB = MN;

     \(\widehat B = \widehat N\).

Vậy \(\Delta ABD = \Delta MNQ\) nên AD = MQ ( 2 cạnh tương ứng)